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J. Phys.: Condens. Matter 5 (1993) 2603-2618. Printed in the LK 

Space dispersion feature of the conduction electron spin 
resonance in two-dimensional electron systems caused by the 
absence of ‘up-down’ symmetry 

V M Edelstein 
instilute of Solid State Physics, Russian Academy of Sciences, Chernogolovk Moscow 
Region 142432. Russia 

Received 23 January 1992. in final form 24 July 1992 

Abstrnct. The conduction elecmn spin resomce (CESR) in two-dimensional (2D) electron 
systems (inversion layen of semiconductor hetemsuuctures and quanNm wells) without ‘up 
down’ symmetry is considered. The pymelectric-like symmetry of such a layer makes a 
difference between lwo n o n ~ I ~  to the layer and lhus leads to the zo-eleckon Hamiltonian 
which includes an additional spin-orbit term H,,, = (a/h)(P x c) . S. where c i s  ule vecmr of 
one of ule non-equivalent normals. Accurate quantum kinetic Wry wilh regard for the spin- 
orbit energy is proposed for ule fin1 time, and ule paramagnetic linear response is evaluated. 
It is shown that, if the CESR is excited by a wave of wavevector q. then the decay rate should 
include a term which reverses its sign with an applied magnetic field B reversal and. for B 
parallel to lhe plane of electron motion. is given by 

r = ~z/r)p(orpFr/fi’)~ + ~ ( w r q ) 2 + ~ m v & ’ f i - ‘ q .  (c x B)I 

where r is the mean collision time and y is the Fermi velocity. An estimate for the effect in 
same semicnnducm hetemsmctures is presented, and possibilities of experimental observation 
are briefly discussed. 

1. Introduction 

After the discovery of optical activity by Arago in 1811 and Biot in 1812, considerable 
attention was paid to the study of physical systems with violated space parity for uncommon 
properties that could reveal such objects. Recently, an analogy of parity violation has 
been observed in two-dimensional (2D) electronic systems. For the first time, speculations 
about this were initiated by experiments on GaAs/AI,Gal-,As heterostrunures [I]. Linear 
extrapolation of electron spin resonance energies measured at a finite magnetic field to 
B = 0 gave rise to a finite spin splitting of the conduction band. This phenomenon was 
interpreted as the existence of a spin-rbit interaction induced by parity violation with 
respect to reflection in the plane of the U) electron layer. In [Z] it was proposed to describe 
the situation phenomenologically by adding to the carrier-effective-mass Hamiltonian a 
spin-orbit (so) term (the Rashba term) of the form 

Ifm = ((Y/fi)o) x c) * U (1.1) 

where p is the electron U) momentum operator, U is the Pauli matrix vector and c is the 
unit vector normal to the layer. However, another reason for lifting the spin degeneracy, 
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based on the lack of inversion symmetry in the elementary cell of the bulk GaAs crystal (the 
p3-term), was soon discovered. Subsequent calculations [3] and measurements [41 led to 
the conclusion that the Rashba term is apparently small in GaAs but should dominate 
in narrow-band-gap semiconductors, such as InAs. Indeed. the zero-field splitting in 
In,Ga~-,As/ln,AII-,As [5] and GaSb/InAs [6] heterostructures has also been deduced 
from an analysis of the beat pattern observed in Shubnikov-de Haas oscillations at high 
magnetic fields. The results of the experiments were successfully described with the help 
of the Rashba term and the value of the SO constant cr/R(In,Gal-,As/In,All-yAs) N 

1.46 x eV cm and cr/R(GaSb/LnAs) N 0.9 x IO-' eV cm was evaluated. Note 
that the constant cr of a 3D CdS crystal of polar symmetry has a fairly similar value: 
cr/h(CdS) N 1.6 x 

For interpretation of the first experiments which revealed the spin-split character of the 
conduction band [ 1.5.61, one needed to know only the electron energy levels. More recently, 
the investigation of the spin-dependent physics of 2D electron structures has taken a new 
direction. A variety of kinetic phenomena, such as the weak localization [4] and the spin 
relaxation of electrons injected into the edge channel of a 2D electron gas in the quantum 
Hall regime [9], have appeared in the literature. All these phenomena need an accurate 
kinetic theory. So, for example, an attempt to understand and describe quantitatively weak- 
localization effects caused by a band so interaction (the Rashba or the p3 mechanism) with 
the help of formulae derived for the case of the impurity so interaction (the Elliott [IO] 
mechanism) is apparently useful but not quite correct. 

The main obstacles to developing a rigorous kinetic theory for a system with so 
coupling. regardless of its origin, relate to a non-hivial spin-momentum dependence 
acquired by scattering amplitudes, vertices and other attributes of such a theory. The 
present consideration avoids some of these mathematical complications by accepting the 
simplifying assumption that the impurity potential is of short-ranged character. However, 
the spin-momentum correlations due to the band so interaction are completely retained. 
Owing to the novel form of identities for the tensor product of the Pauli matrices it appears 
to be possible to solve the transport equations without losing their spinor structure. Although 
identities of that kind are well known [ I  I], the present form, in my opinion, is much more 
convenient for applications. The identities could be useful for any quantum theory of spin- 
dependent phenomena where because of the SO or exchange interaction the spinor structure 
of various processes plays a real role. In particular, it is not difficult to consider with their 
help the case of the p3-type SO coupling which takes place in semiconductor structures 
based on GaAs crystals. 

The main purpose of this study is to investigate the conduction electron spin resonance 
(CESR) in a ZD electron layer with destroyed reflection parity. We shall assume that the 
number of carriers in the layer is large enough to form a degenerate Fermi gas and study 
the hydrodynamic regime, when both the Lamor frequency os = pBgB and the driving 
frequency o are low. Here is the Bohr magneton and g is the Land6 factor. A spin 
relaxation of the electrons within the model considered takes place through the Dyakonov- 
Perel I121 process; the so energy ( I .  1 ) can be considered as the Zeeman energy in a fictitious 
magnetic field Br@) = or@ x c)/pBg which stochastically changes its direction by impurity 
scattering, giving rise to the spin relaxation. In [121, only the uniform limit was considered 
provided that impurity broadening h / r  is much larger than the spin-splitting energy cupF/h 
at the Fermi momentum p~ and the spin relaxation time 

eV cm [7]. 

rs-' E r-'(crpFr/fi2)2 (1.2) 
was found. It will be shown below that under the same condition 
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U p p T / h Z  < 1 (1.3) 

the decay rate of non-uniform spin density of the wavevector q should be a sum of three 
terms: 

where 11 = 2 a p ~ ~ / h ’ ,  1 = up? is the electron mean free path and B is the applied magnetic 
field. Here the first term yields the relaxation of the uniform spin density and the second. 
describes the usual diffusion. The extra term proportional to the invariant q . (c x B), 
i.e. odd in the field B. the layer orientation c and the wavevector q. represents a novel 
effect-a spin precession induced by diffusion. Some arguments for the interpretation will 
be presented in section 3 (see the text below equation (3.8)). For the first time such a 
term was predicted on the grounds of qualitative arguments and measured in a 3D CdS 
crystal in a remarkable paper [7]. However, to my knowledge, an attempt to deduce the 
term in the framework of a microscopic transport theory has never been reported before. 
The approach of [7] in the case under consideration would lead to an incorrect numerical 
pre-factor in the third term as well as loss of the angular dependence of the first term in 
equation (1.4). Unfortunately, equation (1.4) in the particular case of B I c was stated in 
my previous paper [8] erroneously. To obtain the correct result, one should substitute 2a 
for a in equation (4.3) of [SI. It should be emphasized that, although the SO constant u 
enters both the first and the third terms of equation (1.4). it might appear to be difficult to 
infer its value from measurement of the uniform spin-density relaxation because of other 
possible sources of the relaxation, for instance paramagnetic impurities, which are totally 
unrelated to the absence of reflection parity. It is the presence of the invariant q (c x B) 
that undoubtedly indicates the lack of ‘updown’ symmetry of the 2D electronic system. 
The appearance of the 9 .  (c x B) dependence is typical of systems of polar symmetry. A 
correction of this type to the energy of excitons in a CdS crystal was first discovered in 
[13,141 and called the ‘magneto-Stark effect’. 

The basic quantity to be calculated is the paramagnetic susceptibility tensor ,yij(o, q). 
In principle, there are several possibilities for measuring the susceptibility. The imaginary 
part of xij (U, q) can be inferred from the diffusion scattering cross section of neutrons (see 
1151, equation (8.69)) although, for neutron scattering, the small-q pmcess is usually difficult 
to observe because of the underlying Bragg peaks from lattice structure. For semiconductor 
quantum wells, the spin-flip Raman scattering might turn out to be a more sensitive method 
of studying xi j (o ,  q) (see [161, equation (292). and (171, equation (3.16)), in view of the 
fact that resonance enhancement of the scattering amplitude can be achieved. 

Let us discuss experimental conditions for observing the CESR anomalous dispersion. For 
the In,Ga~-,As/In,AI~-,As heterostructure, which may be considered as a typical example, 
Das et a1 [51 measured the effective mass m = 0.046m0, u/h = 1.4 x IO-’” eV cm so that 
the SO splitting .of the Fermi surface 2akF at the electron density n, N 1 x 10l2 is 
equal to 0.65 meV. The SO coupling (1.1) determines a characteristic scale of wavevector 
9= = um/hZ which for this case equals 0.96 x 104 cm-’. To obtain a CESR narrow 
enough to be observed, one needs to fabricate a fairly dirty heterostructure, for instance 
with impurity broadening h / ?  N 5 meV, which is still appreciably smaller than the 
electron Fermi energy CF = fizki/Zm N 40 meV. Then one would have 11 = 0.13, 
h/Ts(q = 0.g I c) = 0.064 meV and, hence, o,s, = 3 at B = 1.1 T and g Y 3. 
Further, the ratio of the anomalous third term of equation (1.4) to the first term equals 
49/39,, and the ratio of the second diffusion term to the third equals q/2qs,. By inelastic 
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scattering of infrared light of energy q 2 0.5 eV the scattering wavevector q = k~ - ICs 
(IC, and k~ are the wavevectors of the incident and scattered light, respectively) ranges over 
an interval 0 < 9 < 2kl 'v 0.5 x IO5 cm-'. It can now be Seen that a situation when all 
three terms of equation (1.4) an approximately equal could be realized. 

Note that many of the ideas under discussion concerning the kinetics of conducting 
media with violated space parity are analogous to those of [18] in which some kinetic 
problems of metals containing non-centrosymmetric impurities were touched on. 

The outline of this paper is the following. In section 2. a detailed description of 
the model and the Feynman NI= are given. In section 3. a method for solution of the 
transport equation is presented. Evaluation of the paramagnetic susceptibility is performed 
in section 4. Some comments about the results obtained as well as the related problems are 
given in section 5. Appendix 1 contains a list of the identities for the tensor products of the 
Pauli matrices; appendix 2 demonstrates the technique of working with Feynman graphs; 
appendix 3 supplies necessary details for solving the transport equations. 

It will be assumed below that the reader is familiar with the many-body quantum-field 
theory (the Matsubara method, the Feynman diagram technique, etc). For a review on these 
topics we refer to the textbook by Abrikosov et 01 [I91 and the paper by Siege1 [20]. A 
somewhat different formulation of some spin-dynamics problems in the Feynman diagram 
language can be found in the review by Barnes [21]. 

2. Model and formulation 

Suppose that the degenerate Fermi gas of non-interacting electrons of charge e, spin 4 and 
magnetic moment p = -g/.wr/2 is subjected to an external static magnetic field B. Then 
the 'in-plane' Hamiltonian of the system under consideration has the form 

where 

i 

Here T is the position of the electron and R, an the positions of the arbitrarily disb5buted 
short-range impurities of concentration nhp In equations (2.lX2.3) and in all equations 
below we set fi = 1. 

There are several dimensionless parameters determining the dynamics and kinetics of 
the system. The applied magnetic field appears in the theory through two parameters which 
are treated below as small: 

OcT (c; 1 UsT (c. 1 (2.5) 

where 
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arc the cyclotron and paramagnetic resonance frequencies, and T is the mean scattering time 
given by 

r-’ = mn,,pluIz. (2.7) 

One can show that the effect of diamagnetic quantization on the ~ 6 s R  is negligible at 
wCx (< 1 and q2 c<. 1. The so constant CY also appears in the problem in two ways. The 
parameter 8 = akF/eF7 EF = k:/2m, having to some extent a pure quantum mechanical 
nature is trrated as being very small so that all powers of S in equations in excess of 
the first can be ignored. Another parameter q = h&Fr  controls the kinetics of spin-flip 
processes by impurity scattering. In this paper we adopt q < 1, i.e. 

8 << 8 << 1 (2.8) 

although, within the technique used, the parameter q is allowed to take any value. The 
left-hand side of equation (2.8) means that 

kFI  >> 1 (2.9) 

where I = wr is the mean free path and VF = kp/m is the Fermi velocity. We shall study 
the hydrodynamic regime, when 

or<<] q ! ( < 1  (2.10) 

where o and q are the angular frequency and the wavevector of a driving field, respectively. 
Lastly, solutions of the transport equations will be given here only for the case of the sharp 
resonance, when 

9’ << OAT. (211) 

Figure 1. A typical diagram for the paramagnetic susceptibility xi,(o. q). 

Consider the paramagnetic susceptibility ,yjj(o, q) of the system. To evaluate ,yi,(w. 9). 
one should sum the so-called ladder diagrams one of which is shown in figure 1, where the 
broken line between two crosses corresponds to the factor (ms)-’  and the double full c w e  
represents the full impurity-averaged one-particle Green function 

GRLA’((. p ,  B) = [( - H o b )  t fi  . B rt i/2r]-’. (2.12) 

Here the superscript R(A) stands for the retarded (advanced) part of the function. After the 
analytic continuation of the Green functions away from the discrete points on which they 
were originally defined to the space of two complex variables t and U, and the conversion 
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of the sum over discrete frequencies into a contour integral. one obtains, as is well known 
[19,20], three terms. The electron Green functions of the former two terms are both 
retarded or advanced. The influence of impurities on the terms is negligible in the limit 
(2.9). Therefore these terms yield the usual static Pauli susceptibility xij(O, 0) under the 
conditions (29) and (2.10): 

x i j ( O ,  0) GijxP XP = ( ~ / z ) @ P B / ~ ) ’ .  (2.13) 

The CESR contributes only to the latter term which includes one retarded and one advanced 
Green function. At temperatures much lower than the Fermi temperature TF = k ; / 2 m k ~  
(ks is the Boltzmann constant) this term may be represented as 

(2.14) 

where C’@, q, B; p) is the impurity renormalized spin vertex. The matrix character of all 
quantities is understood. The BethsSalpeter equation for C$o. q, B; p) plays the role 
of a quantum transport (kinetic) equation. It is schematically shown in figure 2. 

Figure 2 The BetheSalpeter equation for the renormalized spin vertex Xc(o. q, B). 

Further, in view of the inequalities (2.6) and (2.10) one can consider the Zeeman energy 
Hz = - p .  B and the Doppler energy HD = q v(p)/2, entering into the Green functions 

q . v@)/2 + p .  B f i/2tI-’ (215) GR‘A’(5,p f q / 2 ,  E )  N [< - How)  

of equation (2.14). as small perturbations. Note that the velocity operator of the system 

U @ )  = i[Ho@), T I  = p / m  + a(c x U) (2.16) 

as well as the usual scalar part also has a spin component. The graphic representation of 
an expansion of G ( { ,  p f q / 2 ,  B)  in powers of HZ and HD can be found in figure 3. The 
unperturbed (bare) Green function (single full line in the diagrams) has the form 

G!,$(<, P) = K - HOW i/2r1;; = n$@)~:d,Y<, P) (2.17) 
v = i  

where 

(2.18) 



Space dispersion feature of spin resonance 2609 

( b  I 
Figure 3. (a )  Graphical representation of the &man and Doppler energies. (b) The perturbdon 
expansion of he full Green function. 

(2.19) 

Here. E,*, are the energies of two branches ( 
and negative helicities (the projection of a spin on the p x c direction), and 

: energy spectrum of Hob) of positive 

ni*)(p) = ;[I & ( @ x  c) (2.20) 

are the projection operators on these branches. The difference between the diagram 
technique derived and the standard method [19,20] consists of the spinor structure of the 
bare Green function Go(<, p )  and the changed form of the velocity opemtor v@). 

3. Transport equation 

Consider the transport equation in figure 2. Owing to the short-ranged character of the 
impurity potential (2.4) every term of the diagrammatic expansion of figure 2 and, hence, 
the whole vertex function X i ( w  q, B; p )  actually does not depend on the momentum p. 
This property of the impurity potential enables one to perform the integration over internal 
momenta of each graph and to present the graphical equation of figure 2 in the form of a 
linear matrix equation 

q3 B, + q. B)(ypIT(ms q. B)lffh) (3.1) 

where the kernel function T(w,  q. B) is defined as shown in figure 4 and the summation 
convention for repeated indices is used. 

The kernel T ( o ,  q. B)  (the spinor indices are understood) has to be calculated to the 
firs1 order in w,r and to the second order in 41: 

T ( w , q , B ) -  To+T(o)+7- l (B)+TI(q)  t Tz(q) (3.2) 
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cF+w,  p + i q  B 

Figure 4. The kemel of ule Belhe-Salpeler equation. 

where the dependence of T , ( B ) ,  Z(q) and Tz(q) on w can be dropped in the limit (2.10). 
A calculation (see appendix 2) yields the approximate expressions 

(yfJIT(w)laA) = f ~ 8 , g S , ~ +  fu(c-~)~a(c.~).r+~~(cxu)"ya(CX~)~~ (3.3) 

(ySITi(B)laU = -(g/lSl)neij~hiu~~u~A (3.4) 

(yfJITI(q)lW = fioQeijk(d x c)'fl;g& (3.5) 

(3.6) (yBITz(q)laV = -&Q2[~y,de~ + (c -u)&*@~A + (C x @cg (c x UXAI 
where 

w = I/(I  - iwr) (3.7) 

h = B / B  n = w  $5 .Q = qi (3.8) 

The indices i, j .  k ,  n refer to the 3D vector Cartesian components (with a summation 
convention) and e;jk is the 3D antisymmetric tensor. In writing equations (3.3H3.6) we 
retained only leading terms in the parameter q. A diamagnetic contribution to TI@) can 
be shown to include apart from 0,s the additional small parameter IJ* and therefore is 
omitted. A contribution H&, B) to the expansion (3.2) bilinear in 4 and B also exists. 
However, its effect on final results is negligible under the conditions (2.5H210). This 
assertion seems strange, since the aim of the paper is just to evaluate a contribution to 
the spin relaxation rate bilinear in the wavevector q and the field B. Nevertheless, its 
correctness may be understood without any calculations. It is known that for E = q = 0 
the sum of the impurity-ladder graphs for the case of the Fermi gas without so coupling 
has the so-called diffusion pole (or)-'. By taking into account the SO interaction ( I . l ) ,  but 
still for B = 4 = 0, the pole shifts into the lower complex half-plane w -+ w + i/rs. So 
the sum of the 'single' ladder graphs (the ladder of the singleelectron lines) can reach an 
amount of the order of rr/r = q-' >> 1. Therefore, it is clear that the main contribution to 
the problem under consideration comes from graphs which have the 'single' ladder between 
any two HZ and HD vertexes. 

One should pay attention to the spinor structure of equations (3.3H3.6). Comparing the 
original expression of the kernel function T(w,  q, B), as defined in figure 4, with the right- 
hand sides of equations (3.3)-(3.6), one can observe an important difference. Originally 
the kemel T ( w ,  q, B) included, apart from the p integral, the tensor product of two Green 
functions G5G$. Unlike this, every term in equations (3.3H3.6) is the tensor product of a 
matrix which depends only on the indices (y. f J )  entering the graph in figure 4 from the left 

U = (I  - ior) / [ ( l -  ior)'+ sa] U = $(U + U) 
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and a matrix which depends only on the right-hand side indices (a, 1). This rearrangement 
of the spinor indices appears to be possible owing to identities for the tensor products of 
the Pauli matrices presented in the appendix 1. 

Further, from equations (3.4) and (3.5) it is seen that the combination $iqvF(q x c) in 
the expression for the kemel F ( q )  plays the same role as the magnetic field E does in 
TI (B). As the kemel TI (E) describes the well known Larmor precession of an eleclron 
spin about B, a process induced by the kemel TI (q) could be interpreted as a spin rotation 
around the q x c axis or a spin precession induced by electron diffusion. The interpretation 
is not quite perfect. In particular, the Larmor precession is a pure dynamic process, whereas 
the kemel TI (9) is mainly associated with dissipation. 

It is convenient to solve the transport equation (3.1) for every spin component C. U and 
c x U separately. Let and l’,,, be renormalized vertices corresponding to the bare 
vertices c-U and c x U. For the former vertex, one can look for a solution of equation (3.1): 

(3.9) (rc.n).A = c . umL + (rc.u)by(ym-(m. 4. B)W) 

of the form 

re- = DC. U +  v .(e x (3.10) 

which is none other than an expansion of the matrix re., in terms of the complete set of 
2 x 2 matrices (I, uz, U ? ,  uz). A term proportional to the unit matrix, as one can verify, 
equals zero. Substituting (3.10) into equation (3.9) and using the expansion (3.2) and 
equations (3.3H3.6) one obtains a h e a r  equation system, determining the scalar function 
D(m, q, B) and 2D vector function V(W, q, B) of the form 

D = 1 +(U - $Qz)D+ (QN-iqQG x c) .V 
V = (ah’- iqQ6 x c)D+ (U - iQz)V+SZ(c. h)V x c 

(3.11) 

where 

h’ = h - c(c. h). (3.12) 

A solution of the system can be easily found by linear algebra methods and has the form 
(brief directions are given in appendix 3) 

D Y 

V N [h’ + i(c h)h x c] /~(z  - z+) - [h‘ - i(c. h)h x c]/~(z - z-)  

- (c .  h)’1[1/(2 - z+) + I/(Z - 2-11 
(3.13) 

where 

z = WT r* = $qZ[3 - (c. h)*] + iQz i qQ6. (C x h).(3.14) 

Apart from the conditions (2.5>-(2.10), which are assumed to be fulfilled, there is an 
additional restriction for the applicability of equations (3.13). These expressions correctly 
represent the solution of equations (3.1 1) only in intervals near the resonance frequences 
i t w ,  of the order of r;’(q, E). In particular, they are not valid in the static limit w = 0. 
Therefore, equations (3.13) are somewhat symbolic; in the indicated vicinity of one pole 
the contribution of the other pole has to be omitted. We retain the contributions of b t h  

Z+ = &Q - irl. 
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the poles for convenience of application to the spin-flip Raman scattering mentioned in the 
introduction. In that case the pole at w = os corresponds to the Stokes process and the pole 
at w = -os corresponds to the anti-Stokes process. 

Quite analogously, a solution of the transpon equation for the vertex rex*. namely 

(rcXu)=A = c x uUA + ( r , , , ) g y ( Y m w . q .  B)W) (3.15) 

can be sought in the form 

rLxu = A'c. U + W'j(c x u)j i, j = 1,Z. (3.16) 

The substitution (3.16) into equation (3.15) yields the linear equation system for the 2D 
vector A(w, q. B) and the 2 x 2 manix W'j(w, q, B): 

A' = (U - fQ2)A' + W'j[Qh' - iqQ(4 x c)]' 

Win = 8'" - A [ Qh' - iqQ(4 x c)l" + W'j[(v - :Q2)8j" + Q(c.  h)e'""P] 

where 8'j is the Kronecker symbol. 
(appendix 3) 

A' N f{-[h" - i(c. h)(h x cy]/(z - z+) + [h'' + i(c. h)(h x c)']/(z - 2-11 

W'j N ${[8'1- (c x h)' . (c x h)' - ieijn?(c. h ) ] / ( z  - z+) 

(3.17) 

The solution of equations (3.17) has the form 

(3.18) 

+ [S'j - (e x h)' . (c x h)' + ie""c"(c - h)]/(z - z - ) ) .  

All the above discussion conceming the applicability of equations (3.13) has also to hold 
for equations (3.18). 

It is important to realize the physical reason which does not allow the solution of the 
transport equation (3.1) to have a simple Bloch-type form (i.e. to have one pole of the first 
order) because of the restrictions mentioned above. Because of the so energy (1.1) the 
operator of the total electron spin does not commute with the total Hamiltonian even in 
the absence of impurities and the external magnetic field. Of course, for an electron alone, 
having a momentum p, the projection of its spin on the p x c direction is conserved. but none 
of the components of the total spin is conserved. In other words, there is quantum fluctuation 
of the spin density in the ground state, which is one of the main features of the system 
under consideration. Spin dynamics to a high degree depend on whether the characteristic 
frequency (YPF of the fluctuations are less or more than the impurity broadening r-'. From 
all that has just heen said, one could conclude that the transport equation (3.1) hardly has 
a solution of the Bloch form. Nevertheless, in the dirty limit (28) merely examined in this 
paper a solution of such a form does exist, although only inside the n m w  vicinities of 
the resonance frequencies. One should expect an even greater departure from the Bloch- 
type form in the clean limit apFr 1, where the role of the quantum spin fluctuations is 
expected to be very important. 

4. The paramagnetic susceptibility 

We now turn to an evaluation of the resonance part of the paramagnetic susceptihility 
tensor x;;"(w, q, B) given by equation (2.14). In the leading approximation, one can set 
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B = q = 0 in the Green functions of equation (2.14), i.e. one can use the bare Green 
functions Go(€, p) instead of the full Green functions. The identity 

U = c(c . U) - c x (e x U) (4.1) 

permits us to express the vertex E of figure 2 in terms of the dressed vertices rea and 

(4.2) 

rcxn as foilows: 

= er,, - c x rex,. 
Now we have everything ready to calculate the right-hand si& of equation (2.14): 

(i) The bare Green functions are given by equation (2.17). 
(ii) The dressed vertex E is given by equation (4.2). into which one should substitute 

Then, substituting equations (4.2) and (2.17) into equation (2.13) and performing the 

equations (3.10) and (3.16) for the dressed spin vertices rC.- and rex-. 

integration over momentum and sum over spins, one finds that 

@(U. q, B) Y -(om/2*)(g~LB/2)'((sij - h'hj - ie'j"h")/[o - os + ir;i(q)] 

(4.3) + (aij - hihj + , i jn  n le h ) / [U  + 0% + ir;!(q)ll 

where 

l/rs.a(q) = ( ~ l r ) ~ ~ ~ ' ~ 3 - ( ~ ~ h ) ' 1 + ~ Q ~ ~ ~ ~ . ( c x  MI. (4.4) 

The intensity (the differential CMSS section) for the spin-flip light scattering from q, k~ 
to w, ks can be written as [16,17] 

dza/(ds2do) [ 1 - e x p ( - ~ / k ~ T ) I - ~ I m [ u ~ ~ ~ ( w ,  q, B)ujl (4.5) 

where w = W I  - ws. q = kl - ks, v = (kl x ks)/lk1 x ksl. Thus, the line shape of light 
scattering has the form 

d'o/(dQW 2: I1 - (v h)ZI I I (d  + n~(o)lr;~(q)I/[(w - us)' + r&)I 

- [WhB(-m)r;!(P)]/[(W + %)' + r;%I)ll (4.6) 

where nB(W) = [exp(o/ksT) - I]-'. Discussion of a pre-factor in equation (4.6) can be 
found in [16,17]. 

5. Summary 

We shall conclude by commenting on the results presented and raising questions for further 
investigations. We have studied the spin relaxation in the ZD elechonic system with band 
SO coupling caused by the lack of 'up-down' symmerry. The main features of the cESR 
exhibited by equations (4.3) and (4.6) are as follows: 

(i) the dependence of the uniform relaxation time on the angle between the applied 
magnetic field and the normal to the layer and 

(ii) the anomalous space dispersion of the relaxation rate. 
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The best hope for experimental confirmation of these results seems to be in the line 
shape of the spin-Rip Raman scattering. 

Further, the method developed in this paper is well suited to treating the sholt-ranged 
impurity potential. It has permitted us to solve the kinetic problem without finding an explicit 
form of the distribution function (the density matrix) in momentum space. However, for 
the case of semiconductor structures it is desirable to have the possibility of treating other 
partial impurity-scattering amplitudes equally with the s wave. This is because the difference 
between the transport cross section and the full cross section may be rather large, especially 
in structures of high mobility. This much more difficult problem can probably be solved as 
well, although by slightly different methods. A similar calculation taking into account the 
diamagnetic quantization is also planned for the future. 

Appendix 2 

We shall show here how one can obtain equations (3.3X3.6). The graphical definition 
of the kernel T(o, Q, B) is presented in figure 4. Each of the full Green functions can 
be expanded in the Ooppler and Zeeman energies as shown in figure 3. The result in 
the diagram language has the form shown in figure Al. The evaluation of the diagrams 
can be carried out in a manner similar to that of the Feynman graphs evaluation in spinor 
electrodynamics. In the integrals over momentum space, one should change the Cartesian 
coordinates for polar coordinates. Then angular integration gives rise to a combination of 
Pauli matrices, and the remaining radial integration can be elementarily performed with the 
help of the theory of residues. In the last step, one should use the identities in appendix 1. 
We shall carry out the calculation in detail for the graphs in figures Al(n) and AI@), 
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Figure Al. The perturbation expansion of the kernel function T b .  q. B). 

since the evaluation of the graphs in figures Al(c) and Al(d) is completely analogous, 
respectively, to that of the graphs in figures Al(u) and Al(b). 

The contribution of the graph in figure Al(a) taking into account equation (2.17) is 
given by 

where the indices in parentheses are the helicities of the electronic states and 

R(o.b) 1 gn:b)n$@, 

EF. 
4 PZ e = - - Q w . b )  = 1 2nr F 

Substituting equation (2.20) into equation (A2.2), one obtains 

--G'R'(€ + 0, P)Gjhq)(EF, p )  2m 

R1a.b) = a / ~ [ S y ~ + u ( l j X C ) . U y h l [ 6 a S + b ( l j X C ) . Q a a ]  dp 

= $ [ S Y ~ & 8  + iub(c x U ) ~ A ( C  x a, b = +, -. 
Substituting equations (2.18) and (2.19) into equation 012.3). one obtains 
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It follows from equation (A2.5) that 

e,++, = Q+-) = (1 -ius)-' 
W . 6 )  e(+-, = (1 - iws + iq)-' e++) = (1 -ius - iq)-'. 

Substituting equations (A2.4) and (A2.6) into equation (A2.1) one gets 

(yBITo(o)ld.) = $,AB + i (c  x u);,(c x d&l[1/(1 - i07)1 

+ $ [ 8 y ~ 8 e p  - i(c x U ) ; ~ ( C  x u);&[(l - ios)/[(l - ior)'+ $ 1 .  (A2.7) 

To obtain equation (3.3), one should use the identities (Al.l) and (A1.2). 
The contribution of the graphs in figure AI@) can be evaluated to the leading order 

in the parameter q setting the SO constant a equal to zero, i.e. substituting G:o(<.p) for 
ga8(E. P ) .  where 

W . 8 )  g Y  (6 .p)  = 6& - p2/2m i @)-I. 

Then one obtains 

which in view of the identity (A1.4) coincides with the right-hand side of equation (3.4). 

well. 
By evaluating the graphs in figure Al(d) one can use the Green functions g&. p )  as 

Append*: 3 

In this appendix, directions for solving the linear equation systems (3.11) and (3.17) will 
be given. 

Excluding the function D from equations (3.11) we obtain the equation for the vector 
v 

(D'j + e'j'u')VJ = X' i ,  j = 1.2 k = 1.2.3 (A3.1) 

where 

Dij = 6'j(i - + ;QZ)(I - + 4 ~ 2 )  + xixj  

X = -(ah' - iqQ6 x c) (A3.2) 

a = -Cs2(C. h)(l - U +  @*). 

An equation of similar type is obtained if one excludes the vector function A from the 
system (3.17): 

wiypj  = (1 - + ;ppU. (A3.3) 
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One can verify that 

(Dij  + p a k ) - l  = [D(D-')'' - e'j"o"]/(D+ /aiz) D = detDii. (A3.4) 

To obtain the explicit form of the matrix 8-I we introduce the unit vector e = h'/[l- 
( c .  h)2]'/2. Then the identity 

8'j = c'cj +e'& + (c  x e)'(c x e)' i ,  j = 1.2.3 ( A 3 3  

allows one to represent the vector X in the form 

X = -e(n[ 1 - (c * h)2]'fl - inQ4 - (c x e)}  - iqQ(c x e)(4. e) (A3.6) 

and the whole matrix D'j in the form 

0'' = Ke'ej + M[e'(c x e)' + &(c x e)'] + L(c x e)'(c x e)' (A3.7) 

where 

K = ( l  -u+$Q2) ( l  - ~ + f Q ~ ) + ( Q [ l - ( c . h ) ~ ] ' ~ ~ - i ~ Q ~ ~ ( c x e ) )  

M = iqQ(4. e)[Q[l - ( c .  h) 2 ] 1/2 - i q Q 4 .  , (c  x e ) ]  (A3.8) 

L = ( I  - U + $ Q ~ ) ( I  - U + $ Q ~ ) - $ Q ~ ( ~ . ~ ) ~ .  

It is now evident that 

(&')'I = ( K L  - W - ' ( L B e j  - M[e'(c x e)' +ej(c  x e)'] 

+ ~ ( c  x e)'(c x e ) j ] .  (A3.9) 

Equations (A3.4) and (A3.9) allow one to obtain the solution of equations (A3.1) and 
(A3.3) and, consequently, equations (3.11) and (3.17). All that remains for obtaining 
equations (3.13) and (3.18) is to simplify the expressions for the quantities K ,  L and 
a using the inequalities (2.5)-(2.10). 
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